requirements: double-helical structures with $\mathrm{N}(3)-\mathrm{Ag}$ bonding and stoichiometry of one uracil base per silver. The first three, (I)-(III), include two $\mathrm{N}(3)-\mathrm{Ag}-\mathrm{O}$ bonds and the second three, (IV)-(VI), include $\mathrm{N}(3)-$ $\mathrm{Ag}-\mathrm{N}(3)$ and $\mathrm{O}-\mathrm{Ag}-\mathrm{O}$ bonds. In these structures, a marked tendency for Ag^{+}to form an eight-membered chelate ring is completely fulfilled. If we neglect $\mathrm{O}(2)$ as a candidate for metal bonding because of its low basicity, structures (III) and (V) remain, which are identical with those presented by Guay \& Beauchamp (1979). Moreover, there is a distinct possibility of slightly modified structures for (III) and (V), i.e. those with the metal-ion bridge between the stacked bases via additional $\mathrm{Ag}-\mathrm{O}(4)$ bonds without major alternation of the stacking geometry, as shown in (1-methylthyminato) $\mathrm{Ag}, \mathrm{Ag}(1$-methylcytosine $)$, and in the present complex.

KA thanks the Alexander von Humbolt Stiftung for the award of a fellowship.

References

Aoki, K. \& Saenger, W. (1984). Acta Cry'st. C40, 772-775.
Carrabine, J. A. \& Sundaralingam, M. (1971). Biochemistry, 10, 292-299.
Gagnon, C.. Hubert, J., Rivest, R. \& Beauchamp, A. L. (1977). Inorg. Chem. 16, 2469-2473.

Gellert, R. W., Fischer, B. E. \& Bau, R. (1980). J. Am. Chem. Soc. 102, 7812-7815.
Guay, F. \& Beauchamp. A. L. (1979). J. Am. Chem. Soc. 101, 6260-6263.
Faggiani, R. Lippert, B. \& Lock. C. J. L. (1980). Inorg. Chem. 19. 295-300.

Faggiani, R.. Lippert, B.. Lock, C. J. L. \& Pfab, R. (1981). Inorg. Chem. 20, 2381-2386.
Faggiani, R.. Lock. C. J. L.. Pollock, R.. Rosenberg. B. \& Turner, G. (1981). Inorg. Chem. 20. 804-807.
International Tables for X-ray Crystallograph.' (1974). Vol. IV. Birmingham: Kynoch Press.
Kistenmacher, T. J.. Rossi. M. \& Marzilli. L. G. (1979). Inorg. Chem. 18. 240-244.
Kistenmacher, T. J., Sorrell. T. \& Marzilli. L. G. (1975). Inorg. Chem. 14, 2479-2485.
Kosturko, L. D., Folzer. C. \& Stewart. R. F. (1974). Biochemistry, 13, 3949-3952.
Lippert, B. \& Neugebauer. D. (1980). Inorg. Chim. Acta, 46. 171-179.
Lippert. B., Neugebauer. D. \& Schubert. U. (1980). Inorg. Chim. Acta, 46, L11-L14.
Lippert. B. \& Schubert, U. (1981). Inorg. Chim. Acta, 56. 15-20.
Lock. C. J. L., Peresie. H. J.. Rosenberg. B. \& Turner. G. (1978). J. Am. Chem. Soc. 100. 3371-3374.

Lumme. P. \& Mutikainen. I. (1980). Acta Crust. B36. 2251-2259. Mutikainen, I. \& Lumme. P. (1980). Acta Crist. B36. 2237-2240.
Sakurai, T. \& Kobayashi, K. (1979). Rikagaku Kenklusho Hokoku, 55, 69-77.
Shin, Y. A. \& Eichhorn, G. L. (1980). Biopoḷmers, 19. 539-556.
Shugar. D. \& Fox. J. J. (1952). Biochim. Biophys. Acta, 9. 199-218.
Sobell. N. M. \& Tomita, K. (1964). Acta Crıst. 17. 122-126.

Structure of Tricarbonylbis(triphenylphosphine)ruthenium(0)-Tetrahydrofuran (2/1), octadecane-7,16-diacetatocopper(II) Methanol Solvate, $\left[\mathrm{Cu}\left(\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8}\right)\right] . \mathrm{CuCl}_{2} . \mathrm{CH}_{3} \mathbf{O H}$

By P. Gluziński, J. W. Krajewski and Z. Urbañczyk-Lipkowska
Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Poland

and G. D. Andreetti and G. Bocelli
Centro di Studio per la Strutturistica Diffrattometrica del CNR, Istituto di Strutturistica Chimica dell'Università di Parma, 43100 Parma, Italy
(Receiced 12 September 1983: accepted 15 December 1983)

Abstract. $\quad M_{r}=606.43$, monoclinic, $\quad P 2_{1} / n, \quad a=$ 16.711 (3), $\quad b=9.671$ (2), $\quad c=15.829$ (3) $\AA, \quad \beta=$ $111.00(2)^{\circ}, \quad V=2388.2(9) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.687(1) \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1.54178 \AA . \quad \mu=$ $4.715 \mathrm{~mm}^{-1}, F(000)=1248 . T=293 \mathrm{~K}$. Final $R=$ 0.078 for 1877 observed reflections. Both Cu atoms have coordination spheres of irregular octahedral shapes, the first (inside the ligand cavity) being coordinated symmetrically to pairs of N . ether O , and
carbonyl O atoms, the second (of CuCl_{2}) to two Cl and four carbonyl O atoms of neighbouring ligands, thus joining the molecules into chains parallel to [101]. Additional complexation by CuCl_{2} results in an inequality in N configurations and loss of symmetry in the ligand.

Introduction. The structure of 1.4.10.13-tetraoxa-7.16-diazacyclooctadecane-7,16-diacetatocopper(II)
(c) 1984 International Union of Crystallography

Table 1. Atomic fractional coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters with e.s.d.'s in parentheses

	x	${ }^{\prime}$	z	$B_{\text {eq }}{ }^{*}\left(\AA^{2}\right)$
Cu(1)	2055 (1)	2385 (1)	--403 (1)	3.05 (5)
N(1)	I654 (5)	4088 (7)	115 (5)	$3 \cdot 0$ (3)
C(2)	1407 (6)	5297 (9)	- 545 (7)	$3 \cdot 1$ (3)
C(3)	2011 (7)	5595 (10)	-1025 (7)	$3 \cdot 7$ (4)
$\mathrm{O}(4)$	2838 (4)	5955 (6)	-390 (5)	$4 \cdot 0$ (3)
C(5)	3508 (7)	5845 (10)	-729(7)	4.0 (4)
C(6)	3919 (6)	4420 (11)	-560 (8)	4.0 (4)
$\mathrm{O}(7)$	3284 (4)	3433 (6)	-1038 (5)	$3 \cdot 8$ (3)
C(8)	3658 (6)	2095 (10)	-1031 (8)	$4 \cdot 1$ (4)
$\mathrm{C}(9)$	2902 (6)	1168 (10)	-1545 (7)	$3 \cdot 6$ (3)
$\mathrm{N}(10)$	2400 (5)	702 (7)	-1000 (5)	$2 \cdot 8$ (3)
C(11)	2859 (6)	-476 (9)	-393(7)	$3 \cdot 5$ (4)
$\mathrm{C}(12)$	2568 (7)	. 781 (11)	356 (7)	4.1 (4)
$\mathrm{O}(13)$	1691 (5)	-1155 (6)	45 (5)	4.4 (3)
C(14)	1290 (8)	-1159 (11)	682 (9)	4.9 (4)
C(15)	1346 (8)	187 (12)	1194 (7)	$5 \cdot 5$ (5)
$\mathrm{O}(16)$	1130 (4)	1300 (6)	528 (5)	4.3 (2)
$\mathrm{C}(17)$	984 (7)	2532 (10)	943 (7)	$3 \cdot 8$ (4)
C(18)	857 (6)	3705 (10)	284 (7)	$3 \cdot 5$ (4)
C(19)	2360 (6)	4482 (8)	958 (6)	$3 \cdot 0$ (3)
C(20)	3074 (6)	3411 (9)	1248 (7)	3.0 (3)
$\mathrm{O}(21)$	3660 (4)	3533 (6)	1977 (4)	$3 \cdot 5$ (2)
O(22)	3035 (4)	2440 (6)	679 (4)	$3 \cdot 4$ (2)
C(23)	1565 (6)	163 (9)	-1667(6)	$3 \cdot 3$ (3)
C(24)	933 (6)	1384 (9)	-2006 (7)	3.4 (4)
$\mathrm{O}(25)$	337 (4)	1297 (6)	-2739 (4)	$3 \cdot 6$ (2)
$\mathrm{O}(26)$	1063 (4)	2420 (6)	-1486 (4)	$3 \cdot 8$ (2)
$\mathrm{Cu}(2)$	4549 (1)	2115 (1)	2087 (1)	$3 \cdot 16$ (4)
$\mathrm{Cl}(1)$	3970 (2)	555 (3)	2718 (2)	4.9 (1)
$\mathrm{Cl}(2)$	5223 (2)	780 (3)	1432 (2)	$5 \cdot 6$ (1)
$\mathrm{C}(\mathrm{Mc})$	4456 (7)	- 2966 (11)	1901 (8)	$5 \cdot 8$ (5)
O(Me)	5174 (5)	-2312 (8)	2544 (6)	7.0 (3)

* Calculated from the anisotropic thermal parameters as $B_{\text {eq }}$ $=8 \pi^{2}\left(U_{1} \cdot U_{2} \cdot U_{3}\right)^{1 / 3}$ where U_{i} are the eigenvalues of the $U_{i j}$ matrix.
(ACCU) was recently reported twice independently (Uechi, Ueda, Tazaki, Takagi \& Ueno, 1982; Gluziński, Krajewski, Urbańczyk-Lipkowska, Bleidelis \& Mishnyov, 1982). The discussed ligand 7,16-diaza-18-crown-6- N, N^{\prime}-diacetic acid seems to have a unique metal-selectivity for $\mathrm{Cu}^{\mathrm{II}}$ (Uechi et al., 1982) and was therefore the object of intensive investigations. In the course of these it was found recently (Kolinski \& Mrozinski, 1983) that the above ligand when complexed in methanolic solution with an excess of copper(II) dichloride forms crystals of greater Cu content than the already known complex, until the CuCl_{2} excess is exhausted. The results of an elemental analysis suggested the presence of one CuCl_{2} molecule built in some way into the known ACCU complex (ACCU. CuCl_{2}). The nature of coordination of this additional Cu atom and its influence on the ligand structure was not clear and therefore the present X-ray diffractometric investigation was undertaken on this new compound.

Experimental. Black crystal $(0.22 \times 0.25 \times 0.20 \mathrm{~mm})$ sealed in a Lindemann capillary tube. Siemens AED diffractometer, $\mathrm{Cu} K \alpha$ radiation, $\omega / 2 \theta$ scan, $2 \theta_{\max }$ $=100^{\circ}, h k l_{\max }=13,16,17$. Stability controlled on two reflections at every 25 reflection intervals, up to 36% loss of intensity. 2713 unique reflections collected, 1877 observed with $I>2 \sigma_{I} ; R_{\mathrm{int}}=0.024$ from 90 pairs of
$h k 0$ reflections. Cell constants refined against 20 reflections. Space group $P 2_{1} / n$ (from absences). Lorentz and polarization but no absorption correction. Structure solved by heavy-atom method: positions of two Cu atoms in the asymmetric unit derived from three $\mathrm{Cu}-\mathrm{Cu}$ vectors on three-dimensional Patterson projections (SHELX76, Sheldrick, 1976). Positional parameters of Cl and all non- H ligand atoms found from F_{o} Fourier synthesis. After refinement in anisotropic mode (full-matrix least-squares procedure in $S H E L X$) one methanol molecule was located from the Fourier difference maps. Final refinement performed with all geometrically calculated positions of H atoms treated as rigid groups (except methanol hydroxyl). Hydroxyl H atom found from difference Fourier maps and refined separately (damping 0.2). Final $R=0.078$, $R_{w}=0.083 ; \quad w=3 \cdot 1 /\left(\sigma_{F}^{2}+0.003 F^{2}\right) . \quad(\Delta / \sigma)_{\max }=$ $0 \cdot 02$. Max. electron density on Fourier difference maps $<0.4 \mathrm{e}^{-3}$. Scattering factors from International Tables for X-ray Crystallography (1974). All computations done on SEL minicomputer.

Discussion. The fractional atomic coordinates of all non-H atoms in the asymmetric unit and $B_{\text {eq }}$ values are listed in Table 1.* Fig. 1 presents a projection of the molecule showing the coordination mode for both Cu atoms.

* Tables of structure factors, anisotropic thermal parameters, H -atomic coordinates, and torsion angles have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39126 (15 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. Projection of $\mathrm{ACCU} . \mathrm{CuCl}_{2}$ on the $a b$ plane with crystallographic labelling of atoms. Light lines are coordination bonds. A carboxyl group of the molecule at $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$ is also shown.

Table 2. Distances $\left(\AA\right.$) and angles $\left({ }^{\circ}\right)$ for the ligand molecule and the Cu coordination spheres (e.s.d.'s in parentheses)

The bond lengths and angles in the ligand molecule (Table 2) do not reveal any points of particular interest except some $\mathrm{N}-\mathrm{C}$ bonds which are significantly longer than usually observed for tertiary amino N. This was observed similarly for ACCU (Gluziński et al., 1982; Uechi et al., 1982) as well as for other 7,16-diaza-18-crown-6 complexes with Pb or Cu salts (Metz \& Weiss, 1973; Herceg \& Weiss, 1973a,b) but not for uncomplexed 7,16-diaza-18-crown-6 (Herceg \& Weiss, 1972) or for the KNCS complex (Moras, Metz, Herceg \& Weiss, 1972). It seems, therefore, that the presence of a heavy metal coordinated to the ring N atoms has a loosening influence on the $\mathrm{N}-\mathrm{C}$ bonds in the discussed ligand.

The ligand in the title compound does not have any exact or approximate symmetry elements contrary to that of ACCU as well as of 7,16-diaza-18-crown-6- N, N^{\prime}-dipropionatocopper(II) (PRCU) (Krajewski, Gluziński, Urbañczyk-Lipkowska \& Dobler, 1983) which are both of exact C_{i} symmetry. This loss of symmetry as a result of further complexation with CuCl_{2} may be seen when one considers the differences in the 18 -membered heteroring conformations. A convenient method for comparison of conformations of macrocyclic rings consists of the consideration of the sequence of torsion angles (cf. Urbańczyk-Lipkowska, Krajewski, Gluziński, Andreetti \& Bocelli, 1981) indicating the mutual configuration of the 1,4 -atoms involved. Thus, an anti position (a) may be defined by
the angle $|\theta|>150^{\circ}$, and a gauche position (g) by the angle $|\theta|<75^{\circ}$. An asterisk at these indices denotes a strong deviation $\left(\Delta|\theta| \sim 25-30^{\circ}\right)$ from the ideal 180 or 60° values. In this convention the following configuration sequence in $\mathrm{ACCU} . \mathrm{CuCl}_{2}$ may be established Istarting from the $\mathrm{N}(1)-\mathrm{C}(2)$ bond towards increasing label numbers $|:| a-g-a-g^{*}-g-a-a-g-g-a-g-a-g$ -$g^{*}-a-a-g-a-$. Similarly, the configuration sequence for ACCU or PRCU is ($\left.-a-g-a^{*}-g^{*}-g-a-a-g-g^{*}-\right)(\times 2)$. The substantial difference in these sequences involves the bonding modes of N atoms which are asymmetrical in ACCU. CuCl_{2} ($-g-a$ - and $-a-a-$) and symmetrical in ACCU or PRCU ($-g^{*}-a$).

In $\mathrm{ACCU} \cdot \mathrm{CuCl}_{2}$ the $\mathrm{Cu}(1)$ atom placed inside the ligand cavity is coordinated to $\mathrm{N}(1), \mathrm{N}(10), \mathrm{O}(7)$, $O(16), O(22)$ and $O(26)$. The coordination distances to $\mathrm{N}(1), \mathrm{N}(10), \mathrm{O}(22)$ and $\mathrm{O}(26)$ are considerably shorter (about $2 \AA$) than those to $\mathrm{O}(7)$ and $\mathrm{O}(16)(2 \cdot 7-2 \cdot 8 \AA)$. Thus, the coordination-sphere polyhedron of $\mathrm{Cu}(1)$ is an irregular octahedron (Fig. 2a). The atoms $\mathrm{N}(1)$, $\mathrm{N}(10), \mathrm{O}(22)$ and $\mathrm{O}(26)$ are coplanar, the mean deviation of these atoms from the least-squares plane defined by them being ± 0.002 (7) $\AA . \mathrm{Cu}(1)$ lies 0.018 (2) \AA out of this plane. The atoms $\mathrm{O}(7), \mathrm{Cu}(1)$ and $\mathrm{O}(16)$ are not collinear langle at $\mathrm{Cu}(1)$ is $168.5(1)^{\circ}$; angles of $\mathrm{Cu}(1)-\mathrm{O}(7)$ and $\mathrm{Cu}(1)-\mathrm{O}(16)$ to the normal of the plane are 18.8 (2) and $14.2(2)^{\circ}$ respectivelyl. Nevertheless, this coordination polyhedron is similar in its shape to that found in ACCU.

Fig. 2. Shapes of coordination polyhedra for (a) $\mathrm{Cu}(1)$, and (b) $\mathrm{Cu}(2)$. For atomic labelling see Table 1 . For symmetry code see Table 2.

The $\mathrm{Cu}(2)$ atom of the CuCl_{2} molecule is coordinated to four carboxylic O atoms of two neighbouring molecules of the ligand. The coordination distances are comparable to those of $\mathrm{Cu}(1)$ (two short, two elongated) (Table 2). Taking into account the two Cl atoms, the coordination sphere for $\mathrm{Cu}(2)$ is a completely irregular octahedron where $\mathrm{Cl}-\mathrm{Cl}$ forms an edge (Fig. $2 b$). The volumes of both polyhedra despite differing geometry and coordinating elements are very close [$V=13.68$ (4) and 13.38 (3) \AA^{3} for $\mathrm{Cu}(1)$ and $\mathrm{Cu}(2)$ respectively].
The common $O(22)$ and $O(26)$ atoms of the two coordination spheres cause the molecules of the complex to be joined forming chains parallel to [101]. The $\mathrm{Cu}(1) \cdots \mathrm{Cu}(2)$ and $\mathrm{Cu}(2) \cdots \mathrm{Cu}\left(1^{\prime}\right)$ distances are 4.604 (2) and 4.651 (2) \AA respectively; their angles at
$\mathrm{Cu}(1)$ and $\mathrm{Cu}(2)$ are $177.28(3)$ and $170.78(3)^{\circ}$ respectively.

The authors thank Dr R. A. Kolinski for supplying pure samples of the crystals and for valuable discussion. The investigations were supported by grants from the Polish Academy of Sciences, Nos. MR-I. 9 and C-1.1.

References

Gluziński, P., Krajewski, J. W., Urbańczyk-Lipkowska, Z., Bleidelis, J. \& Mishnyov, A. (1982). Cryst. Struct. Commun. 11, 1589-1592.
Herceg, M. \& Weiss, R. (1972). Bull. Soc. Chim. Fr. pp. 549-551.
Herceg, M. \& Weiss, R. (1973a). Acta Cryst. B29, 542-547.
Herceg, M. \& Weiss, R. (1973b). Rev. Chim. Minér. 10, 509-518.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Koliński, R. A. \& Mroziński, J. (1983). Polyhedron, 2, 1217-1220.
Krajewski, J. W., Gluziński, P., Urbańczyk-Lipkowska, Z. \& Dobler, M. (1983). In preparation.
Metz, B. \& Weiss, R. (1973). Acta Cryst. B29, 1088-1093.
Moras, D., Metz, B., Herceg, M. \& Weiss, R. (1972). Bull. Soc. Chim. Fr. pp. 551-555.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Uechi, T., Ueda, I., Tazaki, M., Takagl, M. \& Ueno, K. (1982). Acta Cryst. B38, 433-436.
Urbańczyk-Lipkowska, Z., Krajewski, J. W., Gluziński, P., Andreetti, G. D. \& Bocelli, G. (1981). Acta Cryst. B37, 470-473.

The Structures of the Lanthanide Ethyl Sulfate Enneahydrates, $M\left(\mathrm{C}_{2} \mathbf{H}_{\mathbf{5}} \mathbf{S O}_{4}\right)_{3} \cdot \mathbf{9} \mathbf{H}_{\mathbf{2}} \mathrm{O}$ [$M=\mathrm{La}-\mathrm{Lu}$ (except Pm)], at 171 K

By Roger E. Gerkin and William J. Reppart
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA

(Received 15 September 1983; accepted 20 December 1983)

Abstract

M=\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}, \mathrm{Tb}\), Dy, $\mathrm{Ho}, \mathrm{Er}, \mathrm{Tm}, \mathrm{Yb}$, Lu. Isomorphous, hexagonal $P 6_{3} / m$, $Z=2, \lambda($ Mo $K \bar{\alpha})=0.71069 \AA . M=$ La: $M_{r}=676.40$, $a=14.045$ (1), $c=7.0996$ (5) $\AA, V=1212.8$ (2) \AA^{3}, $D_{x}=1.852 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=20.97 \mathrm{~cm}^{-1}, F(000)=684, R$ $=0.020,1560$ reflections. $M=\mathrm{Lu}: M_{r}=712.46$, $a=13.834$ (1), $c=6.9612$ (8) $\AA, V=1153.8$ (3) \AA^{3}, $D_{x}=2.051 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=46.30 \mathrm{~cm}^{-1}, F(000)=712, R$ $=0.020,1438$ reflections. The lanthanide ions are coordinated by nine water molecules, with the coor-

dination polyhedron having $\overline{6}\left(C_{3 h}\right)$ symmetry. The metal-oxygen distances decrease with increasing atomic number, and correlate well with the ionic radius of the metal. The ethyl sulfate ions are hydrogenbonded to the water molecules coordinating the metal ion. Probability-plot analysis shows that the geometry of the ethyl sulfate ion is independent of both the structure and the temperature in the range $171-298 \mathrm{~K}$. Hydrogen atoms were located using difference Fourier syntheses, and were successfully refined.

